Connect with us

Internet and Telecom

How the Loss of Net Neutrality Could Lead to Increased Censorship and Bias Online

Published

on

As we scroll through our social media feeds, binge-watch shows on streaming platforms, or even read this blog post, it’s easy to forget the principles of net neutrality that make it possible. The internet has always been a sanctuary of free speech and open access to information for everyone. However, in recent years, the concept of net neutrality has come under threat as governments and corporations strive for more control over online content. With the repeal of net neutrality rules by the Federal Communications Commission (FCC), many people are concerned that such action could lead to increased censorship and bias online. In this article, we will explore how losing net neutrality can affect us all and what steps we can take to protect our digital rights.

What is Net Neutrality?

Net neutrality is the principle that all data on the internet should be treated equally. This means that all web traffic should be treated without discrimination, and that ISPs (internet service providers) shouldn’t be able to favor certain websites or services over others.

The concept of net neutrality has been around for a while, but it came to the forefront of public consciousness in 2015 when the FCC (Federal Communications Commission) voted to repeal net neutrality. The repeal set off a series of protests from advocates and tech companies who argued that without net neutrality, ISPs would be able to discriminate against certain websites and services by restricting their access to bandwidth, slowing down their traffic, or even throttling it altogether.

There are a few potential consequences of repealing net neutrality. One is that ISPs could start charging sites different rates for faster access­—something which critics say could lead to increased censorship and bias online. Another is that smaller websites might not be able to compete with bigger ones when it comes to accessing fast broadband speeds, which could lead to them going out of business.

There are also concerns about how repealing net neutrality will impact the future of the internet as a whole. Without strong protections in place, there’s fear that ISPs will start favoring their own content over other sites and services, leading to an overall decline in quality and diversity online.

Advertisement

The Effects of Net Neutrality on the Internet

Net neutrality is the principle that all web traffic should be treated equally, without preferential treatment or discrimination. The FCC repealed net neutrality in December 2017, leading to fears that the internet will become more censored and biased.

Internet providers could now give some websites an advantage over others by speeding up their traffic or charging more for access. This would allow those with money to gain an advantage over others, and could lead to censorship and bias against unpopular ideas.

Net neutrality has been thought to protect freedom of speech and democracy online, as it ensures that all voices are heard equally. Loss of net neutrality could lead to increased censorship and bias online, as providers can favour certain sites over others.

Why the Loss of Net Neutrality Could Lead to Increased Censorship and Bias Online

Net neutrality is the principle that all Internet traffic should be treated equally. Under net neutrality, ISPs could not discrimination against particular websites or content. However, the repeal of net neutrality would allow ISPs to charge websites and services more for faster access, which could lead to censorship and bias online.

ISPs could also start privileging their own services over competitors. For example, Comcast could give its streaming service preferential treatment over rivals like Netflix. This would create a two-tiered system in which some websites and services are available only to those who can afford to pay extra, which could disadvantage smaller companies and limit competition.

Advertisement

The repeal of net neutrality would also allow ISPs to sell data caps and slow down traffic on certain sites in order to increase revenue. This would restrict users’ freedom of expression and ability to access information without paying extra fees.

Net neutrality is important because it ensures that all Internet users have an equal opportunity to access information and participate in the digital marketplace. The repeal of net neutrality would lead to increased censorship and bias online, which would threaten the privacy of users and restrict their freedoms.

What You Can Do to Prevent the Loss of Net Neutrality

Net neutrality is the principle that all data on the internet be treated equally. Without net neutrality, providers could charge different rates for different types of traffic, which would lead to increased censorship and bias online. The FCC voted to repeal net neutrality in December 2017, which could lead to these consequences.

The repeal of net neutrality could lead to increased censorship and bias online because ISPs could start charging websites for access to their customers, instead of treating all data equally. This would give large corporations more control over what we see and do online, and would make it difficult for smaller businesses to compete.

The loss of net neutrality also affects our ability to freely communicate online. Without net neutrality rules in place, ISPs could block certain websites or slow down access to them altogether. This would make it harder for people to engage in political discussion or exchange information without fear of censorship.

Advertisement

There are several ways you can get involved in fight against the loss of net neutrality:
1) Share this article with your friends and family members so they know what’s at stake if net neutrality is repealed.
2) Sign up for alerts from organizations like Fight For The Future or OpenMedia so you’re always aware of any developments related to the issue.
3) Write letters to your local representatives asking them to support net neutrality regulations.
4) Advocate for basic consumer rights when shopping online by using a VPN when accessing questionable content or sites that may be blocked by your ISP.

Conclusion

The loss of net neutrality could have a huge impact on the internet as we know it. With providers able to discriminate against certain websites and services, users may be at a disadvantage when trying to access the same information online. This would lead to increased censorship and bias in online content, which would ultimately harm both consumers and entrepreneurs. It is essential that we do all we can to protect net neutrality in order to keep the internet open and accessible for everyone.

Author

Continue Reading
Advertisement

Internet and Telecom

How 6G and Quantum Internet Will Transform Connectivity

Published

on

By

Reviewed
By Penelope Olive

How 6G and Quantum Internet Will Transform Connectivity

Introduction

Imagine streaming lifelike holograms, steering a remote bulldozer from miles away, and securing bank transfers with physics rather than passwords—all before this decade ends. Two technologies promise to push connectivity that far: 6G and the quantum internet. Each on its own can change how we work, learn, and play. Together they unlock experiences that sound like science fiction today. This guide unpacks what 6G and quantum networking are, why they matter, and how their paths overlap to transform life online for everyone—from everyday phone users to mission-critical industries.

What Is 6G?

6G is the sixth generation of mobile networks, expected to launch in limited cities by 2030. Where 5G delivered gigabit speeds, 6G targets terabit-per-second peaks, micro-second latency, and built-in artificial intelligence that tunes the network in real time. Researchers explore frequencies above 100 GHz (terahertz waves) and antenna arrays that steer signals like spotlights instead of wide beams. These upgrades let 6G move more data, serve more devices, and sense the physical world with radar-like precision.

Planned 6G Performance Targets

Spec 5G Today 6G Goal Why It Matters
Peak speed 10 Gb/s 1 Tb/s Download a 4 K film in a blink
Typical latency 5 ms 0.1 ms Real-time remote surgery or vehicle control
Connected devices/km² 1 million 10 million Dense IoT in smart factories
Energy per bit Baseline 10× lower Greener networks, longer battery life

What Is the Quantum Internet?

The quantum internet uses quantum particles—usually photons—to send information. Thanks to properties like superposition and entanglement, quantum bits (qubits) behave differently from classical bits. Two key concepts power the future network:

  1. Quantum Key Distribution (QKD) – Entangled photons create encryption keys that eavesdroppers cannot copy without being noticed.
  2. Quantum Entanglement Swapping – Quantum repeaters refresh fragile qubit links, letting secure connections span continents.

While 6G focuses on speed and capacity, the quantum internet focuses on security and new computing models. Early field tests link labs over 100-kilometer fibers, and pilot satellite relays already beam entangled photons between ground stations.

How 6G and Quantum Internet Complement Each Other

How 6G and Quantum Internet Will Transform Connectivity

Image by: Yandex.com

Ultra-Fast Pipes Meet Ultra-Secure Locks

6G’s terabit channels can carry vast quantum-encrypted keys in milliseconds. Devices could negotiate QKD sessions in the background, then swap massive files at record speed—all under physics-grade security.

Edge Computing + Distributed Quantum Processing

6G pushes AI inference and caching to the network edge. A quantum internet can link small quantum processors into a “virtual mainframe,” solving tasks beyond classical reach. The fusion lets time-sensitive workloads run near users while complex optimization taps remote quantum clusters.

Holographic Telepresence

Smooth holographic chats need both dense bandwidth (6G) and encryption that protects biometric scans (quantum keys). Pairing the two delivers lifelike calls without exposing personal data to cyber-theft.

Advertisement

Key Use Cases That Become Possible

Real-Time Digital Twins in Industry

Smart factories build a live 3-D copy of every robot, conveyor, and sensor. 6G streams high-resolution data; quantum encryption guards trade secrets. Engineers anywhere adjust parameters and watch changes update instantly on the shop floor.

Autonomous Mobility at Global Scale

Self-driving trucks crossing borders require centimeter-level maps and split-second command loops. 6G slashes latency; quantum links authenticate control messages so hijacks fail.

Planet-Wide Telemedicine

A surgeon in New York manipulates haptic gloves; a robotic arm in rural Kenya mirrors motions with sub-millisecond lag. Quantum keys ensure video and patient records stay private.

Immersive Education

Students join mixed-reality field trips—floating through ancient ruins or cellular landscapes. 6G supplies 360-degree resolution; quantum routing keeps sessions cheat-proof for exam proctoring.

Challenges on the Road Ahead

High-Frequency Obstacles

Terahertz waves struggle through walls and rain. Networks will need dense micro-cells on street furniture and AI that hands connections off seamlessly.

Advertisement

Quantum Fragility

Qubit states collapse easily. Quantum repeaters must work at room temperature, and error-correction codes must handle noise without bulky hardware.

Integration Costs

Small carriers and developing nations may lag unless open standards let older gear interoperate. Governments and alliances must fund early trials to avoid a new digital divide.

Security Paradox

While quantum keys stop hacks, criminals could use quantum computers to break today’s encryption before quantum networks replace it. Businesses must adopt post-quantum algorithms during the transition.

How to Prepare for 6G and Quantum Internet

How 6G and Quantum Internet Will Transform Connectivity

Image by: Yandex.com

Organizations and individuals can take early steps to get ready.

For Businesses

Audit your network needs and plan upgrades to fiber backbones. Partner with research labs to trial 6G prototypes and QKD systems. Start pilot projects for AI-driven network slices.

For Developers

Learn quantum programming basics and terahertz communications concepts. Experiment with open-source quantum SDKs and 6G simulation tools. Building proof-of-concept apps now will give you a head start.

Advertisement

For Policy Makers

Allocate spectrum for 6G bands and quantum channels. Fund testbeds and standardization bodies. Encourage public-private partnerships for infrastructure investment.

Preparing Businesses Today

How 6G and Quantum Internet Will Transform Connectivity

Image by: Yandex.com

  1. Audit Data Workflows – Map which transactions will need quantum-safe encryption.
  2. Adopt Open APIs – Choose routers and IoT hubs built for software upgrades; 6G features will arrive gradually.
  3. Train Staff – Upskill teams on AI-driven network management and basic quantum concepts to avoid future talent gaps.
  4. Experiment with Edge Nodes – Deploy small AI models on local gateways now; these will migrate smoothly onto 6G slices later.
  5. Follow Standards Bodies – Track 3 GPP releases for 6G and ETSI/ITU drafts for quantum networking to time investments.

Simple Tips for Consumers

  • Keep devices updated; many 5G phones will receive partial 6G features via firmware.
  • Use multi-factor authentication—quantum hacks of old ciphers are still years away, but layered security is wise.
  • Try AR apps on Wi-Fi 6E; skills learned today will translate to 6G.

Timeline Snapshot

Year 6G Milestone Quantum Internet Milestone
2025 First terahertz testbeds above 100 GHz 1 000 km fiber QKD pilot in Europe
2027 AI-powered cell self-healing demos Space-to-ground entanglement across oceans
2029 Pre-commercial 6G in smart campuses Quantum repeater chains hit metro scale
2030 Urban 6G rollouts, consumer devices Hybrid classical-quantum routers ship
2032+ Rural coverage expansion Global quantum backbone links continents

Frequently Asked Questions

Will I need a new phone for 6G?

Yes, because antenna chips and terahertz radios differ from 5G hardware. Early adopter devices should appear around 2029.

Can quantum internet replace regular fiber?

Not exactly. Quantum links carry keys or entanglement, not everyday video streams. They will ride alongside classical data lines.

How fast will quantum networking be?

Raw speed matters less than security and synchronization. Most user data stays classical; quantum layers secure the transfer.

What happens if a quantum link breaks?

The system re-establishes entanglement or falls back to post-quantum encryption, keeping sessions alive though perhaps slower.

Conclusion

6G aims to deliver lightning-fast, ultra-responsive mobile service, while the quantum internet promises tamper-proof security and new computing horizons. Merged, they mark a shift from simply connecting devices to orchestrating intelligent, trustworthy, and immersive experiences worldwide. Businesses can prepare by upgrading flexible infrastructure, adopting quantum-safe practices, and training talent today. Consumers can look forward to richer apps, holographic calls, and greater privacy—all within a decade. The networks of tomorrow are forming now; staying informed ensures you thrive when they switch on.

Advertisement

Call-to-Action: Want a head start on the next connectivity wave? Subscribe to our monthly digest for practical 6G pilots, quantum security tips, and grant opportunities—delivered free to your inbox.


Author

Continue Reading

Internet and Telecom

5G vs. Wi-Fi 6: Which Is Right for Your Home 2025

Published

on

By

Reviewed
By Serena Clark

5G vs. Wi-Fi 6 for Home 2025

Introduction

In the fast-evolving world of technology, choosing the right internet connection is crucial for staying connected. With the rise of 5G and Wi-Fi 6, home users are faced with a choice between these two powerful technologies. But how do they compare? Which one should you choose for your home in 2025? In this article, we will explore the differences between 5G and Wi-Fi 6, how they impact your daily internet use, and which one is better for you.

What is 5G?

5G vs. Wi-Fi 6 for Home 2025

Image by: Yandex.com

5G is the fifth generation of mobile network technology, offering faster speeds, lower latency, and more reliable connections than previous generations like 4G. This technology is designed to support high-demand applications such as streaming, gaming, and IoT (Internet of Things) devices. 5G uses a combination of low, mid, and high-frequency bands to deliver incredibly fast internet speeds, with some areas capable of reaching speeds up to 10 Gbps.

One of the major benefits of 5G is its ability to offer high-speed internet on the go, even in crowded areas. Whether you’re at a stadium or in the middle of a busy city, 5G promises to keep your connection strong.

What is Wi-Fi 6?

5G vs. Wi-Fi 6 for Home 2025

Image by: Yandex.com

Wi-Fi 6, also known as 802.11ax, is the latest Wi-Fi standard designed to improve internet speeds and efficiency in crowded environments. This new standard offers several improvements over its predecessor, Wi-Fi 5 (802.11ac), including faster speeds, better range, and more stable connections. Wi-Fi 6 uses OFDMA (Orthogonal Frequency Division Multiple Access) to handle more devices simultaneously, making it ideal for homes with many connected devices like smartphones, laptops, and smart home devices.

Wi-Fi 6 also uses MU-MIMO (Multi-User, Multiple Input, Multiple Output) technology to allow multiple devices to communicate with the router at the same time, improving overall network performance. Additionally, Wi-Fi 6’s TWT (Target Wake Time) feature helps save battery life on devices, ensuring they don’t consume unnecessary power.

The Role of 5G and Wi-Fi 6 in the Future

5G vs. Wi-Fi 6 for Home 2025

Image by: Yandex.com

The role of 5G and Wi-Fi 6 will continue to grow as more devices become connected to the internet. 5G is designed to work well in a world where smartphones, smart home devices, and even cars need constant, high-speed internet. This will play a huge role in the future of smart cities, where 5G will enable rapid data sharing between various technologies. Similarly, Wi-Fi 6 will ensure that home networks can support all the new smart devices, from smart speakers to security cameras, without affecting the quality of the connection. As we move forward, both technologies will play an important role in keeping us connected in our homes, workplaces, and even in the cities we live in.

5G vs. Wi-Fi 6: Key Differences

5G vs. Wi-Fi 6 for Home 2025

Image by: Yandex.com

1. Speed and Performance

5G offers incredibly fast speeds, with potential download speeds of up to 10 Gbps in ideal conditions. It’s ideal for activities that require constant high-speed connections, like 4K streaming, gaming, and virtual reality.

Wi-Fi 6 offers speeds of up to 9.6 Gbps, but its true strength lies in its ability to support more devices simultaneously without slowing down. This makes it ideal for households with many connected devices.

2. Range and Coverage

5G provides wide-area coverage, ideal for users who need to stay connected while moving around or when traveling. However, 5G networks require a close connection to a 5G tower for optimal speeds.

Advertisement

Wi-Fi 6 operates in smaller areas, typically limited to your home or office. Its range is limited by the router’s power and the size of your home, but it offers reliable connections within its range.

3. Latency

5G has ultra-low latency, meaning there’s minimal delay between sending and receiving data. This makes it perfect for real-time applications like gaming, video calls, and augmented reality.

Wi-Fi 6 also has low latency but is generally designed for less time-sensitive applications.

4. Device Capacity

5G can support a large number of devices simultaneously without slowing down, making it a great choice for smart cities and crowded areas.

Wi-Fi 6 shines in homes with many devices. It uses technologies like OFDMA and MU-MIMO to allow multiple devices to operate simultaneously without interference.

Advertisement

Which One Is Right for Your Home?

5G vs. Wi-Fi 6 for Home 2025

Image by: Yandex.com

Choosing between 5G and Wi-Fi 6 depends on your specific needs and home setup. Here are a few considerations:

  1. For High-Speed Internet On the Go: If you need fast and reliable internet outside of your home, 5G is the way to go. It’s perfect for those who travel frequently or live in areas where traditional broadband is not available.

  2. For Multiple Devices at Home: If you have a lot of devices connected at home, Wi-Fi 6 is likely your best option. It ensures that each device gets optimal performance without causing congestion or lag.

  3. For Low Latency Activities: If you play online games, stream videos, or use applications that require low latency, 5G provides a superior experience with minimal delay.

  4. For Reliable Home Network: If you’re looking for a stable and efficient home network for things like working from home, video calls, and IoT devices, Wi-Fi 6 will offer more consistent performance over time.

Challenges Facing 5G and Wi-Fi 6

Despite their benefits, 5G and Wi-Fi 6 come with their own set of challenges. For 5G, one of the biggest hurdles is the lack of widespread coverage. While 5G is available in some areas, it is still being rolled out in others, meaning that many people cannot yet access its full potential. Wi-Fi 6, on the other hand, requires a new router that supports this technology, and not all devices are compatible with it just yet. Both technologies also come at a higher price, with new devices and routers often costing more than older models. Overcoming these challenges will be essential for making 5G and Wi-Fi 6 more accessible to everyone in the coming years.

The Future of 5G vs. Wi-Fi 6: Which Is Right for Your Home in 2025?

5G vs. Wi-Fi 6 for Home 2025

Image by: Yandex.com

Looking ahead to 2025, both 5G and Wi-Fi 6 will continue to evolve. As coverage for 5G improves and more devices become compatible, it will become an even more attractive option for people who need fast internet on the go. For those looking to improve their home network, Wi-Fi 6 will be the go-to choice, providing the speed and efficiency needed to handle a growing number of connected devices. Whether you choose 5G or Wi-Fi 6, both technologies will offer better experiences in the future, but the right choice for your home will depend on your needs.

Comparative Table: 5G vs. Wi-Fi 6 Advantages and Disadvantages

Feature 5G Wi-Fi 6
Speed Extremely fast (up to 10 Gbps) Fast (up to 9.6 Gbps)
Range Wide-area coverage Limited to home/office range
Latency Ultra-low Low
Device Capacity Supports many devices Ideal for multiple devices
Best For Mobility, high-speed internet Home networks, multiple devices
Installation Requires network coverage Requires a Wi-Fi 6 router

Conclusion

Both 5G and Wi-Fi 6 offer incredible advancements in internet technology, but which one is right for you depends on your needs. If you’re looking for high-speed internet that can keep up with your mobile lifestyle, 5G is a great choice. However, if you have multiple devices at home and need a reliable and fast Wi-Fi network, Wi-Fi 6 is the best option for you. Consider your home’s internet usage, the number of devices, and your mobility needs when deciding between the two.

Call to Action

If you’re ready to upgrade your home network, consider Wi-Fi 6 for a stable and fast connection. Or, if you’re always on the move, 5G could be your ideal solution. Explore more about both technologies and make the right choice for your home today!

Author

Continue Reading

Finance

How Bitcoin Play An Important Role In Finance

Published

on

By

Reviewed
By Ebony Brown

Bitcoin, the pioneering cryptocurrency, has not only revolutionized finance but also become a prime target for hackers and fraudsters seeking to exploit its decentralized nature and pseudonymous transactions. In recent years, several high-profile scams have shed light on the vulnerabilities within the Bitcoin ecosystem. This article explores the methods hackers use to exploit Bitcoin, analyzes notable scams, and discusses lessons learned to enhance security measures.

Methods of Exploitation

Financial

This image is taken from google.com

Hackers employ various sophisticated techniques to exploit Bitcoin, capitalizing on weaknesses in both technical infrastructure and human behavior:

  1. Phishing and Social Engineering

    Phishing attacks target individuals through deceptive emails, websites, or messages, tricking users into revealing private keys or login credentials.

  2. Malware and Ransomware

    Malicious software infects devices to steal Bitcoin wallets or extort users by encrypting data and demanding ransom payments in Bitcoin.

  3. Exchange Hacks

    Cybercriminals target cryptocurrency exchanges, exploiting vulnerabilities in their security protocols to steal users’ funds.

  4. Ponzi Schemes and Investment Scams

    Fraudsters lure investors with promises of high returns, using Bitcoin to mask their activities and evade regulatory scrutiny.

Analysis of Notable Scams

Several high-profile incidents illustrate the diverse tactics employed by hackers and fraudsters:

Scam Description Impact
Mt. Gox Major Bitcoin exchange hacked in 2014, resulting in loss of 850,000 Bitcoins. Loss of investor funds, bankruptcy proceedings.
Bitfinex Hack 2016 breach led to theft of 120,000 Bitcoins from user accounts. Significant financial losses, reputational damage.
PlusToken Ponzi Scheme Operating from 2018-2019, promised high returns, defrauded investors of billions in Bitcoin. Large-scale financial losses, arrests of perpetrators.

Lessons Learned

From these scams, critical lessons emerge for stakeholders in the cryptocurrency ecosystem:

  1. Enhanced Security Measures

    Implement robust security protocols, including multi-factor authentication and cold storage for large holdings.

  2. Regulatory Compliance

    Stricter regulations can mitigate fraud and enhance transparency in cryptocurrency transactions.

  3. Education and Awareness

    Educate users about phishing tactics, the importance of securing private keys, and due diligence in investment decisions.

  4. Innovative Technologies

    Develop and adopt advanced blockchain analytics and AI-driven security solutions to detect and prevent fraud.

Comparative Table: Security Measures

Security Measure Effectiveness Implementation
Multi-factor Authentication High Widely adopted, enhances login security.
Cold Storage Very High Best practice for storing large amounts securely.
Blockchain Auditing Tools Moderate to High Helps track transactions, detect anomalies.
AI-driven Fraud Detection Emerging Promising for real-time detection of suspicious activity.

Regulatory Challenges and Global Cooperation

Addressing the vulnerabilities in Bitcoin requires a coordinated international effort. The decentralized and borderless nature of cryptocurrencies poses challenges for regulatory bodies worldwide. Different jurisdictions have varying approaches to oversight, which can create loopholes for fraudsters to exploit. However, recent initiatives by regulatory bodies to enhance KYC (Know Your Customer) and AML (Anti-Money Laundering) practices are steps in the right direction. Collaborative efforts between governments, financial institutions, and blockchain developers are crucial for establishing robust regulatory frameworks that protect investors without stifling innovation.

Impact on Investor Confidence and Market Volatility

The prevalence of Bitcoin scams not only affects individual victims but also undermines broader market confidence. High-profile incidents, such as exchange hacks or Ponzi schemes, can lead to significant market volatility, affecting Bitcoin’s price and overall sentiment. Investors may become wary of participating in the cryptocurrency market, fearing potential loss of funds due to security breaches or fraudulent schemes. Therefore, restoring and maintaining trust through enhanced security measures and transparent practices is essential for fostering a stable and resilient cryptocurrency ecosystem.

Emerging Trends in Cybersecurity for Cryptocurrencies

As hackers evolve their tactics, the cybersecurity landscape must also adapt. Emerging technologies such as blockchain analytics and AI-driven fraud detection are becoming pivotal in combating cryptocurrency fraud. Blockchain analytics tools can trace transactions and identify suspicious patterns, while AI algorithms can analyze vast amounts of data in real-time to detect anomalies indicative of fraud. Moreover, decentralized finance (DeFi) platforms are implementing innovative security measures to protect user funds without relying on centralized entities. These advancements signify a promising trend towards greater security and resilience in the face of evolving cyber threats in the cryptocurrency space.

Conclusion

Advertisement

As Bitcoin and cryptocurrencies continue to evolve, the threat landscape posed by hackers and fraudsters evolves in tandem. By understanding their methods, analyzing past scams, and implementing rigorous security measures, stakeholders can mitigate risks and foster a safer environment for Bitcoin transactions. Vigilance, education, and innovation are key to safeguarding the future of digital finance against exploitation.

Author

Continue Reading

Readers like you help support Contrank. When you make a purchase using links on our site, we may earn an affiliate commission. Read More.

Advertisement

Trending